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Chapter 2

Principle Component Analysis and Linear

Optics

2.1 Introduction

Principle component analysis (PCA) is a widely used technique in mul-
tivariate statistics to identify dominant patterns in a given dataset. This is
accomplished by a transformation to pick a coordinate axis that maximizes
the variance of all data points along that axis [24, 25, 26]. For a given dataset
X, the unit length basis vectors v = [v1, v2, . . . , vn] ∈ RM that maximize the
variance is evaluated as

vTCijv

vTv
= max (2.1)

where

Cij =
1

n− 1

n∑

i,j=0

(Xi −X)(Xj −X) (2.2)

is the covariance matrix (cov{Xi, Xj}). Subsequent orthogonal axes can be
computed to form a set of basis vectors that completely define the dataset
with a reduced dimensionality. Using this transformation, the original data
matrix Xn×m can be decomposed as

X = WV T (2.3)

where Wn×m and Vm×m comprise of orthogonal vectors describing the spatial1

and temporal2 behavior of the leading principle components. This decompo-
sition is mathematically equivalent to a singular value decomposition (SVD).

1Behavior of the principle components at the each monitor position.
2Time evolution of a principle component.
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2.2 Singular Value Decomposition

Any n×m real or complex matrix X can be factorized into the form

X = UΣV † (2.4)

where U is an n× n unitary matrix, Σ is a n×m diagonal matrix, and V † is
the Hermitian conjugate of an m×m unitary matrix [27]. Both U and V are
hermitian, such that

XX† = UΣ2U †, X†X = VΣ2V † (2.5)

The diagonal elements of Σ represent the square roots of the eigenvalues of co-
variance matrix X†X or XX† and are referred to as singular values. The
number of non-zero singular values reveals the dimensionality of the data
set. Since U and V are unitary matrices, the vectors of {u1, u2, . . . , un} and
{v1, v2, . . . , vm} form an orthonormal basis of X.

SVD has found many applications, especially in data processing and nu-
merical problems. The most direct application of SVD is the computation
of eigenvalues of cov{Xi, Xj}. Unlike the computation of eigenvalues using
traditional algorithms, SVD is robust against perturbations and roundoff er-
rors [28]. A perturbation in the data matrix can be decomposed as

A + δA = U(Σ + δΣ)V † (2.6)

Since U and V are unitary, they have a unit norm, and ||δA|| = ||δΣ||. There-
fore, perturbations in the data matrix manifest themselves as perturbations in
singular values of the same order. Given a rectangular matrix, the SVD essen-
tially computes a pseudo-inverse which naturally lends itself to least square
problems extensively used in physics. The rank of the matrix is easily es-
timated from the number of non-zero singular values which determines the
minimum number of modes to completely the describe the system. Since the
factorization groups the data into basis vectors, the reduced dimensionality is
very useful for data and image compression schemes.

The distribution of multiple BPMs along the beam trajectory and their
capability to acquire several sequential TBT data is ideal for multivariate time
series analysis to understand the underlying structure of the lattice. Since the
BPM data is a collection of space-time series, SVD factorizes the information
into

B(x, t) =
∑

n

σnUn(t)Vn(x) (2.7)
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where, Un and Vn are the eigenmodes of the “spatial” and “temporal” corre-
lation matrices

C(xi, xj) =
∑

t

B(xi, t)B(xj , t) (2.8)

C(ti, tj) =
∑

x

B(x, ti)B(x, tj) (2.9)

In this chapter we focus on the application of SVD on TBT data from the
BPMs to infer beam phase space and corresponding lattice parameters. This
numerical technique was first applied to beam physics by J. Irwin and group [29].
A detailed treatment of transverse beam dynamics in 1D (no transverse cou-
pling) using PCA-SVD formalism can be found in Refs. [30, 31]. Independent
component analysis, another numerical approach (similar to PCA) using a
blind source separation technique has also been applied to study BPM signals
of interest [32]. We outline the application of SVD on BPM data and present
measurements of RHIC optics using this formalism and betatron oscillations
excited by ac dipoles.

2.3 Linear Optics: Formalism

Assuming, the motion is dominated by betatron motion without coupling,
the data from m BPMs recording t turns each can be represented in a matrix
form. This BPM matrix can be factorized as








b11 b12 . . .

b21
. . .

b31
...








︸ ︷︷ ︸

Bt×m

=








u+
1 u−1 . . .
...

...
...

...
u+
t u−t . . .








︸ ︷︷ ︸

Ut×m








σ+ 0 . . . . . .
0 σ−
...

. . .
... σm








︸ ︷︷ ︸

Σm×m








v+
1 v−1 . . .
...

...
...

...
v+
m v−m . . .








T

︸ ︷︷ ︸

V T
m×m

(2.10)

where “+” and “-” represent the orthogonal vectors representing a betatron
mode. Σm×m = [σ+, σ−, . . .], Vm×m = [v+, v−, . . .], and Ut×m = [u+, u−, . . .],
are the corresponding non-negative singular values, eigenvectors representing
the spatial variation of betatron function, and temporal eigenvectors repre-
senting the time evolution of the betatron mode respectively.

The TBT data in the mth BPM can be expressed as

bmt =
√

2Jtβm cos(φt + ψm) (2.11)
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The BPM matrix is normalized by the number of turns B = bmt /
√
T , therefore

the covariance matrix is given by

Cmn
B =

1

T

T∑

t=1

bmt b
n
t (2.12)

=

T∑

t=1

J

T

√

βmβn[cos (ψm − ψn) + cos (2φt + ψm + ψn)] (2.13)

= 〈J〉
√

βmβn cos (ψm − ψn) (2.14)

To find the eigenvalues and eigenvectors, we need to solve

CBv = λv (2.15)

where v =
√

2Jβm cos (φ0 + ψm). From the mth component of the secular
equation we have the condition that

M∑

n=1

βn sin 2(φ0 + ψn) = 0. (2.16)

The two solutions for Eq. 2.16 are

φ0 = −1

2
tan−1





∑

n

βn sin 2ψn
∑

n

βn cos 2ψn



 (2.17)

and φ0 + π/2 corresponding to the two eigenvalues

λ± =
1

2
〈J〉

[
M∑

n=1

βn ±
M∑

n=1

βn cos 2(φ0 + ψn)

]

. (2.18)

The normalized eigenvectors (spatial) are given by

v+ =
1

√

λ+

[√

〈J〉βm cos (φ0 + ψm)
]

(2.19)

v− =
1

√

λ−

[√

〈J〉βm sin (φ0 + ψm)
]

(2.20)

and the corresponding, normalized temporal vectors are given by

u+ =

√

2Jt
T 〈J〉 cos (φt − φ0) (2.21)

u− = −
√

2Jt
T 〈J〉 sin (φt − φ0) (2.22)
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Therefore, the Twiss functions 3 can be derived from the betatron vectors

ψ = tan−1

(
σ−v−
σ+v+

)

(2.23)

β = 〈J〉−1(σ2
+v

2
+ + σ2

−v
2
−) (2.24)

Error bounds in the Twiss functions are

σψ =

√
(
∂ψ

∂σ+

)2

σ2
+ +

(
∂ψ

∂σ−

)2

σ2
− ≈ 1√

T

σr
σs

√

〈β〉
2β

(2.25)

σ∆β

β

=

√
(
∂β

∂σ+

)2

σ2
+ +

(
∂β

∂σ−

)2

σ2
− ≈ 2βσψ (2.26)

2.4 RHIC Linear Optics: Measurements

The RHIC lattice consists of 6 arcs, each with 11 FODO4 cells with ap-
proximately 80◦ phase advance. Parameters of the arc dipoles and quadrupoles
are shown in Table 1.2. Each of the six interaction region (IRs) consists of
a triplet quadrupole scheme to focus the beams at the collision point, and a
pair of D0 and DX dipole magnets to bring the beams in and out of collision.
A schematic of the final focus IR (6 o’clock) is shown Fig. 2.1. A section be-
tween the final focus and arc consists of FODO cells similar to the arc with a
few dipoles for dispersion suppression. The “ideal” β functions and dispersion
functions near an IR are plotted a function of longitudinal position in Fig. 2.2.
Optics in Fig. 2.1 are for proton-proton collisions with β∗ = 1m at the collision
point.

Limitations in measuring Twiss functions are primarily related to the qual-
ity and availability of reliable BPM data. At RHIC, a significant number of
BPMs exhibit failures related to radiation, electronics and low level software
issues which are discussed in chapter 3 and Ref. [19]. These BPMs are ex-
cluded from the calculation of Twiss parameters. It was also found that a few
BPMs show turn mismatch due to timing problems in the electronics which
is corrected for 1-2 turns mismatch because the phase advance between two
consecutive BPMs are usually smaller than π/2. Beyond three turns, this cor-
rection can lead to ambigous results and the only remedy is to fix the timing

3The parameters β, α, and γ are also called Twiss functions [8]
4A pair of focusing and defocusing quadrupoles inter-spaced by a bending dipole

magnet or a drift space
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Figure 2.1: The 6 o’clock IR final-focus region with triplet quadrupoles, D0
and DX bending dipoles, and linear and non-linear correctors (courtsey F. Pi-
lat).

at the hardware level using simulated beam signals or with a circulating beam
with a single injected bunch.

Optics measurements were taken at injection during a working point scan
during Run 2004 [20]. Figs. 2.3 and 2.4 show a comparison between model and
measured Twiss functions for Au-Au injection (γ = 10.25) and p-p injection (γ
= 25.94). The rms of the phase advance difference, (ψmodelm −ψmeasuredm ) and the
rms of relative difference in β function, (βmodelm −βmeasm )/βmodel were calculated
to understand the sensitivity of optics measurements to the working point
and β∗. Some measurements show a large deviation from the model mainly
due to BPM failures. Data files with very large deviation are not included in
this analysis. The measurements for Yellow and Blue ring were not separated
because we assume that the instrumentation in both rings were similar.

Tables 2.1 and 2.2 show a detailed list of rms differences for the different
working points at injection and store. Note that the model tunes are not
exactly matched to measured tunes [21]. Fig. 2.5 shows a plot of average
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Figure 2.2: β functions (top) and dispersion functions (bottom) at the 6 o’clock
IR region. A representation of the lattice (dipoles in black and quadrupoles
in red) is shown in the middle. The betatron tunes are Qx = 28.23 and
Qy = 28.22, and the horizontal dispersion at the collision point is zero.

values and their standard deviations of (∆β/β)rms and ∆ψrms only for Au-
Au and p-p injection and store conditions. The other working points are not
plotted because of large systematic errors. It is clear from Fig. 2.5 that large
deviation from the mean values are mainly due to systematic errors. A number
of systematic measurements and improvements in BPM reliability will reduce
these deviations significantly. One can notice that the rms phase advance
difference for Q ∼ 0.2 region appears to be slightly better than Q ∼ 0.7 region.
One can also notice that for Q ∼ 0.2 region, the (∆β/β)rms is smaller for
injection optics (β∗ = 10m) than store optics (β∗ = 1m) as expected. However,
the region near Q ∼ 0.7 shows contrary results which needs to be verified. A
large number of statistics are needed to arrive at a definitive conclusion.
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Figure 2.3: Phase advance and beta function for Au-Au injection optics using
AC dipoles.

2.5 Error source identification

Closed orbit correction due to random dipole errors has been extensively
studied [33, 34]. Global techniques using linear least square algorithms and
local orbit bumps are routinely used in most accelerators to correct the par-
ticle orbit. A thin horizontal focusing error of ∆q [m−1] causes a horizontal
perturbation wave that propagates (β-beat) downstream to first order in ∆q
like

∆β

β
≈ − ∆q β0 sin(2(φ− φ0)) (2.27)

where β0 is the design horizontal beta function at the quadrupole error source.
The close analogy between particle trajectory and beta wave pertubation in-
dicates a close connection between the problems of closed orbit correction and
quadrupole error source identification.

2.5.1 Global Correction

The effect of the β function perturbation at m BPMs due to change in
strength of n correctors can be formulated into am×n response matrix (similar
to closed orbit response matrix)

A∆~q =

[

∆~β

~β

]

(2.28)
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Figure 2.4: Phase advance and beta function for p-p injection optics using AC
dipoles.

where

Amn =
βn

2 sin (2πQ)
cos (2|ψm − ψn| − 2πQ). (2.29)

The model and measured β-functions at m BPMs can be expressed into a
β-beat vector

[

∆~β

~β

]

=

[(
∆β

β

)

1

,

(
∆β

β

)

2

, . . . ,

(
∆β

β

)

m

]

(2.30)

The goal is to minimize the quadratic residual β-beat at all the BPMs

∥
∥
∥
∥
∥
A∆~q − ∆~β

~β

∥
∥
∥
∥
∥

2

= min. (2.31)

For m = n, the solution for this linear equation is unique and is given by

∆~q = (ATA)−1AT

[

∆~β

~β

]

(2.32)

and for

m > n : over-determined {minimum residual}
m < n : over-constrained {‖∆~q‖ → min} . (2.33)

which can be easily solved using numerical techniques like SVD.
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Figure 2.5: RMS relative differences of phase and β functions between model
and measured values. The data points represent the different working points
for Au-Au and p-p beams at both injection and store.

2.5.2 Local Correction

Just as 3 dipole correctors can be powered to create a closed orbit “three-
bump”, so also can 3 quadrupoles create a local β-bump. The local β pertur-
bation by three quadrupoles require

β1∆q1C(ψ31 − 2πQ) + β2∆q2C(ψ32 − 2πQ) + β3∆q3C(2πQ) = 0 (2.34)

β1∆q1C(2πQ) + β2∆q2C(ψ21 − 2πQ) + β3∆q3C(ψ13 − 2πQ) = 0 (2.35)
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where “C” is the cosine function. Therefore, the strengths of the three quadrupoles
to make a closed β-bump are

∆q1 = −∆β2

β2

1

β1

1

sin(2ψ21)

∆q2 = +
∆β2

β2

1

β2

sin(2ψ31)

sin(2ψ32) sin(2ψ21)
(2.36)

∆q3 = −∆β2

β2

1

β3

1

sin(2ψ32)

and where, for example,
ψ21 = ψ2 − ψ1 (2.37)

It should be noted that the β-bump is not closed in the other (vertical) plane.
The “sliding 3-bump” algorithm can take the measured ∆β/β at many BPMs
vector as input, generating a suggested quadrupole correction vector (with el-
ements at every lattice quadrupole) as output. It is often more practical to
interpret this output vector as a set of quadrupole error sources, especially if
the quadrupoles are powered in families (as in RHIC). If independent hori-
zontal and vertical optics error measurements are available, then both mea-
surements should identify the same quadrupole error sources. An off-line code
β-beat is developed to automate source identification. Simulations to predict
quadrupole errors in LHC and correct β-beat below the 20% level5 in this
fashion is under study [35].

2.6 Summary

An outline of PCA, SVD and their applications to linear optics in colliders
is discussed. The measurement of linear optics using AC dipole data was
demonstrated reliably in Run 2003-04. Optics were measured for different
working point tunes and a comparison for each working point was done to
understand the effect of tune. Although the region near Q ∼ 0.2 shows slightly
better results than the region near Q ∼ 0.7, no significant difference was found
between the working points. The effect of β∗ on the magnitude of β-beat is
consistent for data near Q ∼ 0.2 region. The region near Q ∼ 0.7 needs to be
revisited and more systematic studies will help develop a more accurate model.
For all measurements faulty BPMs were removed based on criteria explained
in the chapter 3.

5LHC aperture constraint for maximum allowable β-beat.
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Table 2.1: Working point optics at Injection(γAu − 10.52, γpp − 25.94). β∗ @
6 IPs (10,10,10,10,10,10) [m]. NE - Not Estimated due to excitation of AC
dipole in only one plane or large systematic errors.

Ring Qx Qy ∆ψrmsx
∆βx

βx

rms
∆ψrmsy

∆βy

βx

rms

RHIC Tunes: Au-Au
B 0.237 0.222 11.9 8 % NE NE
B 0.237 0.222 11.31 7 % 9.4 12 %
Y 0.21 0.22 10.9 NE 10.4 14 %
B 0.238 0.20 6.7 10 % 8.27 8 %
B 0.238 0.20 5.9 11 % 8.6 18 %
Y 0.219 0.232 2.5 5 % 8.6 17 %
B 0.238 0.224 11.46 7 % 10.1 23 %
B 0.238 0.224 NE NE 7.5 8 %

RHIC Tunes: p-p
Y 0.723 0.720 8.19 12 % 14 25 %
Y 0.723 0.720 8.3 13 % 13 NE
Y 0.723 0.720 8.36 16 % 13 NE

RHIC Design Tunes: Au-Au
Y 0.168 0.182 16.1 48 % 9.57 NE
Y 0.168 0.182 4.79 33 % NE NE
Y 0.201 0.187 2.13 19 % 9.8 32 %
Y 0.201 0.187 15.4 39 % 6.5 12 %

ISR Tunes (Au-Au)
B 0.1025 0.11 10.9 13 % 22.3 52 %
B 0.1025 0.11 NE NE 22.4 31 %
B 0.1025 0.11 NE NE 15 8 %

SPS Tunes (Au-Au)
B 0.705 0.695 13.3 25 % 20.07 39 %
B 0.705 0.695 17.0 23 % 17.7 36 %
B 0.705 0.695 NE NE 14.5 9 %
B 0.705 0.695 NE NE 12.3 9 %
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Table 2.2: Working Point Optics at Store with (γAu − 10.52, γpp − 106.58).

Ring Qx Qy ∆ψrmsx
∆βx

βx

rms
∆ψrmsy

∆βy

βx

rms

RHIC Tunes Au-Au
β∗(3,5,1,1,3,5) [m], γ − 107.76

B 0.231 0.223 10.3 12 % 8.0 11 %
B 0.231 0.223 10.7 13 % 7.0 11 %
B 0.231 0.223 10.0 13 % 11.2 12 %
B 0.231 0.223 11.9 12 % 11.9 15 %

RHIC Tunes p-p
β∗(3,10,2,2,3,10) [m], γ − 106.58

Y 0.728 0.722 10.8 12 % 10.7 11 %
Y 0.728 0.722 10.9 12 % 11.93 6 %
Y 0.728 0.722 11.19 12 % 12.36 5 %


